Decentralized Adaptive Fuzzy Control of Robot Manipulators - Systems, Man and Cybernetics, Part B, IEEE Transactions on
نویسنده
چکیده
This paper develops a decentralized adaptive fuzzy control scheme for robot manipulators via a combination of genetic algorithm and gradient method. The controller for each link consists of a feedforward fuzzy torque-computing system and a feedback fuzzy PD system. The feedforward fuzzy system is trained and optimized off-line by an improved genetic algorithm, that is to say, not only the parameters but also the structure of the fuzzy system are self-organized. Because genetic algorithm can operate successfully without the system model, no exact inverse dynamics of the robot system are required. The feedback fuzzy PD system, on the other hand, is tuned on-line using gradient method. In this way, the proportional and derivative gains are adjusted properly to keep the closed-loop system stable. The proposed controller has the following merits: 1) it needs no exact dynamics of the robot systems and the computation is time-saving because of the simple structure of the fuzzy systems; and 2) the controller is insensitive to various dynamics and payload uncertainties in robot systems. These are demonstrated by analyses of the computational complexity and various computer simulations.
منابع مشابه
A robust fuzzy logic controller for robot manipulators with uncertainties
Owing to load variation and unmodeled dynamics, a robot manipulator can be classified as a nonlinear dynamic system with structured and unstructured uncertainties. In this paper, the stability and robustness of a class of the fuzzy logic control (FLC) is investigated and a robust FLC is proposed for a robot manipulator with uncertainties. In order to show the performance of the proposed control...
متن کاملCONTROL OF FLEXIBLE JOINT ROBOT MANIPULATORS BY COMPENSATING FLEXIBILITY
A flexible-joint robot manipulator is a complex system because it is nonlinear, multivariable, highly coupled along with joint flexibility and uncertainty. To overcome flexibility, several methods have been proposed based on flexible model. This paper presents a novel method for controlling flexible-joint robot manipulators. A novel control law is presented by compensating flexibility to form a...
متن کاملA dual neural network for kinematic control of redundant robot manipulators
The inverse kinematics problem in robotics can be formulated as a time-varying quadratic optimization problem. A new recurrent neural network, called the dual network, is presented in this paper. The proposed neural network is composed of a single layer of neurons, and the number of neurons is equal to the dimensionality of the workspace. The proposed dual network is proven to be globally expon...
متن کاملDesign of an enhanced hybrid fuzzy P+ID controller for a mechanical manipulator
We propose in this paper an enhanced fuzzy P+ID controller to improve control performance in both dynamic transient and steady-state periods for mechanical manipulators under uncertainty. The fuzzy P+ID controller adds only two additional parameters to be tuned relative to the original PID controller. One of these parameters is mainly used to reduce a steady-state error. The other is used to sp...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998